
CHAPTER 6

Energy Storage Elements: Capacitors and Inductors

To this point in our study of electronic circuits, time has not been
important. The analysis and designs we have performed so far have been
static, and all circuit responses at a given time have depended only on
the circuit inputs at that time. In this chapter, we shall introduce two
important passive circuit elements: the capacitor and the inductor.

6.1. Introduction and a Mathematical Fact

6.1.1. Capacitors and inductors, which are the electric and magnetic
duals of each other, differ from resistors in several significant ways.

• Unlike resistors, which dissipate energy, capacitors and inductors
do not dissipate but store energy, which can be retrieved at a later
time. They are called storage elements.
• Furthermore, their branch variables do not depend algebraically

upon each other. Rather, their relations involve temporal deriva-
tives and integrals. Thus, the analysis of circuits containing capac-
itors and inductors involve differential equations in time.

6.1.2. An important mathematical fact: Given

d

dt
f(t) = g(t),
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6.2. Capacitors

6.2.1. A capacitor is a passive element designed to store energy in its
electric field. The word capacitor is derived from this element’s capacity
to store energy.

6.2.2. When a voltage source v(t) is connected across the capacitor, the
amount of charge stored, represented by q, is directly proportional to v(t),
i.e.,

q(t) = Cv(t)

where C, the constant of proportionality, is known as the capacitance of
the capacitor.

• The unit of capacitance is the farad (F) in honor of Michael Fara-
day.
• 1 farad = 1 coulomb/volt.

6.2.3. Circuit symbol for capacitor of C farads:

C

+  v  –

(a)

i C

+  v  –

(b)

i

6.2.4. Since i = dq
dt , then the current-voltage relationship of the capac-

itor is

(6.2) i = C
dv

dt
.

Note that in (6.2), the capacitance value C is constant (time-invariant) and
that the current i and voltage v are both functions of time (time-varying).
So, in fact, the full form of (6.2) is

i(t) = C
d

dt
v(t).

Hence, the voltage-current relation is

v(t) =
1

C

∫ t

to

i(τ)dτ + v(to)
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0 dv/dt

Slope = C

i

where v(to) is the voltage across the capacitor at time to. Note that capac-
itor voltage depends on the past history of the capacitor current. Hence,
the capacitor has memory.

6.2.5. The instantaneous power delivered to the capacitor is

p(t) = i(t)× v(t) =

(
C
d

dt
v(t)

)
v(t).

The energy stored in the capacitor is

w(t) =

∫ t

−∞
p(τ)dτ =

1

2
Cv2(t).

In the above calculation, we assume v(−∞) = 0, because the capacitor
was uncharged at t = −∞.

6.2.6. Typical values

(a) Capacitors are commercially available in different values and types.
(b) Typically, capacitors have values in the picofarad (pF) to microfarad

(µF) range.
(c) For comparison, two pieces of insulated wire about an inch long,

when twisted together, will have a capacitance of about 1 pF.

6.2.7. Two important implications of (6.2):

(a) A capacitor is an open circuit to dc.
When the voltage across a capacitor is not changing with time

(i.e., dc voltage), its derivative wrt. time is dv
dt = 0 and hence the

current through the capacitor is i(t) = C dv
dt = C × 0 = 0.
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(b) The voltage across a capacitor cannot jump (change abruptly)
Because i = C dv

dt , a discontinuous change in voltage requires an
infinite current, which is physically impossible.

t

v

t

v

6.2.8. Remark: An ideal capacitor does not dissipate energy. It takes
power from the circuit when storing energy in its field and returns previ-
ously stored energy when delivering power to the circuit.

Example 6.2.9. If a 10 µF is connected to a voltage source with

v(t) = 50 sin 2000t V

determine the current through the capacitor.

Example 6.2.10. Determine the voltage across a 2-µF capacitor if the
current through it is

i(t) = 6e−3000t mA

Assume that the initial capacitor voltage (at time t = 0) is zero.
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Example 6.2.11. Obtain the energy stored in each capacitor in the
figure below under dc conditions.

3 kΩ 

5 kΩ 

2 kΩ 

6 mA 4 kΩ 

2 mF

4 mF
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6.3. Series and Parallel Capacitors

We know from resistive circuits that series-parallel combination is a
powerful tool for simplifying circuits. This technique can be extended to
series-parallel connections of capacitors, which are sometimes encountered.
We desire to replace these capacitors by a single equivalent capacitor Ceq.

6.3.1. The equivalent capacitance of N parallel-connected capacitors
is the sum of the individual capacitance.

Ceq = C1 + C2 + · · ·+ CN

C1

i

i1

C2

i2

C3

i3

CN

iN
+

 – 

v

The equivalent capacitance of N series-connected capacitors is the the
reciprocal of the sum of the reciprocals of the individual capacitances.

1

Ceq
=

1

C1
+

1

C2
+ · · ·+ 1

CN

C1 C2 C3 CN

+ v1 – + v2 – + v3 – + vN –

i

+

 – 

v

Example 6.3.2. Find the Ceq.

5 µF

Ceq

a

b

20 µF 6 µF 20 µF

60 µF
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6.4. Inductors

6.4.1. An inductor is a passive element designed to store energy in its
magnetic field.

6.4.2. Inductors find numerous applications in electronic and power sys-
tems. They are used in power supplies, transformers, radios, TVs, radars,
and electric motors.

6.4.3. Circuit symbol of inductor:

L

i

v
+ 

–
L

i

v
+ 

–
L

i

v
+ 

–

6.4.4. If a current is allowed to pass through an inductor, the voltage
across the inductor is directly proportional to the time rate of change of
the current, i.e.,

(6.3) v(t) = L
d

dt
i(t),

where L is the constant of proportionality called the inductance of the
inductor. The unit of inductance is henry (H), named in honor of Joseph
Henry.

• 1 henry equals 1 volt-second per ampere.

6.4.5. By integration, the current-voltage relation is

i(t) =
1

L

∫ t

to

v(τ) dτ + i(to),

where i(to) is the current at time to.

6.4.6. The instantaneous power delivered to the inductor is

p(t) = v(t)× i(t) =

(
L
d

dt
i(t)

)
i(t)
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0 di/dt

Slope = L

v

The energy stored in the inductor is

w(t) =

∫ t

−∞
p(τ) dτ =

1

2
Li2(t).

6.4.7. Like capacitors, commercially available inductors come in differ-
ent values and types. Typical practical inductors have inductance values
ranging from a few microhenrys (µH), as in communication systems, to
tens of henrys (H) as in power systems.

6.4.8. Two important implications of (6.3):

(a) An inductor acts like a short circuit to dc.
When the current through an inductor is not changing with time

(i.e., dc current), its derivative wrt. time is di
dt = 0 and hence the

voltage across the inductor is v(t) = Ldi
dt = L× 0 = 0.

(b) The current through an inductor cannot change instantaneously.
This opposition to the change in current is an important property

of the inductor. A discontinuous change in the current through an
inductor requires an infinite voltage, which is not physically possible.

(a)

t

i

(b)

t

i

6.4.9. Remark: The ideal inductor does not dissipate energy. The
energy stored in it can be retrieved at a later time. The inductor takes
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power from the circuit when storing energy and delivers power to the circuit
when returning previously stored energy.

Example 6.4.10. If the current through a 1-mH inductor is i(t) =
20 cos 100t mA, find the terminal voltage and the energy stored.

Example 6.4.11. Find the current through a 5-H inductor if the voltage
across it is

v(t) =

{
30t2, t > 0

0, t < 0
.

In addition, find the energy stored within 0 < t < 5 s.
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Example 6.4.12. The terminal voltage of a 2-H inductor is v(t) =
10(1− t) V. Find the current flowing through it at t = 4 s and the energy
stored in it within 0 < t < 4 s. Assume i(0) = 2 A.

Example 6.4.13. Determine vC , iL and the energy stored in the capac-
itor and inductor in the following circuit under dc conditions.

1 Ω 

4 Ω 

5 Ω 

12 V 2 H

1 F

+

vC
–

iL

i
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Example 6.4.14. Determine vC , iL and the energy stored in the capac-
itor and inductor in the following circuit under dc conditions.

2 Ω 4 A 4 F6 Ω 

6 H

+

vC
–

iL

6.5. Series and Parallel Inductors

6.5.1. The equivalent inductance of N series-connected inductors is the
sum of the individual inductances, i.e.,

Leq = L1 + L2 + · · ·+ LN

L1

v

i L2 L3 LN

+ v1 – + v2 – + v3 – + vN –… +

 – 
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6.5.2. The equivalent inductance of N parallel inductors is the recipro-
cal of the sum of the reciprocals of the individual inductances, i.e.,

1

Leq
=

1

L1
+

1

L2
+ · · ·+ 1

LN

L1
v

i

L2 L3 LN

+

 – 

i1 i2 i3 iN

6.5.3. Remark: Note that

(a) inductors in series are combined in exactly the same way as resistors
in series and

(b) inductors in parallel are combined in the same way as resistors in
parallel.

It is appropriate at this point to summarize the most important
characteristics of the three basic circuit elements we have studied. The
summary is given in Table 6.1.

The wye-delta transformation discussed in Section 2.7 for resistors
can be extended to capacitors and inductors.

232 Chapter 6 Capacitors and Inductors

TABLE 6.1

Important characteristics of the basic elements.†

Relation Resistor (R) Capacitor (C) Inductor (L)

p or w:

Series:

Parallel:

At dc: Same Open circuit Short circuit

Circuit variable
that cannot
change abruptly: Not applicable v i

† Passive sign convention is assumed.

Leq �
L1L2

L1 � L2
Ceq � C1 � C2Req �

R1R2

R1 � R2

Leq � L1 � L2Ceq �
C1C2

C1 � C2
Req � R1 � R2

w �
1

2
 Li2w �

1

2
 Cv2p � i2R �

v2

R

i �
1

L
 �

t

t0

 v dt � i(t0)i � C 

dv
dt

i � v�Ri-v:

v � L 

di

dt
v �

1

C
 �

t

t0

 i dt � v(t0)v � i Rv-i:

Find the equivalent inductance of the circuit shown in Fig. 6.31.

Solution:
The 10-H, 12-H, and 20-H inductors are in series; thus, combining
them gives a 42-H inductance. This 42-H inductor is in parallel with
the 7-H inductor so that they are combined, to give

This 6-H inductor is in series with the 4-H and 8-H inductors. Hence,

Leq � 4 � 6 � 8 � 18 H

7 � 42

7 � 42
� 6 H

Example 6.11

4 H 20 H

8 H 10 H

12 H7 H
Leq

Figure 6.31
For Example 6.11.

Calculate the equivalent inductance for the inductive ladder network in
Fig. 6.32.

Practice Problem 6.11

20 mH 100 mH 40 mH

30 mH 20 mH40 mH50 mH
Leq

Answer: 25 mH.

Figure 6.32
For Practice Prob. 6.11.

ale29559_ch06.qxd  07/17/2008  11:59 AM  Page 232
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Example 6.5.4. Find the equivalent inductance Leq of the circuit shown
below.

4 H

Leq

a

b

7 H 12 H

20 H

8 H 10 H

6.6. Applications: Integrators and Differentiators

6.6.1. Capacitors and inductors possess the following three special prop-
erties that make them very useful in electric circuits:

(a) The capacity to store energy makes them useful as temporary volt-
age or current sources. Thus, they can be used for generating a
large amount of current or voltage for a short period of time.

(b) Capacitors oppose any abrupt change in voltage, while inductors
oppose any abrupt change in current. This property makes induc-
tors useful for spark or arc suppression and for converting pulsating
dc voltage into relatively smooth dc voltage.

(c) Capacitors and inductors are frequency sensitive. This property
makes them useful for frequency discrimination.

The first two properties are put to use in dc circuits, while the third
one is taken advantage of in ac circuits.

In this final part of the chapter, we will consider two applications in-
volving capacitors and op amps: integrator and differentiator.
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6.6.2. An integrator is an op amp circuit whose output is proportional
to the integral of the input signal. We obtain an integrator by replacing
the feedback resistor Rf in the inverting amplifier by a capacitor.

+

 – 

v0

+

 – 

iR

vi

R

a

CiC

+

 – 

This gives
d

dt
vo(t) = − 1

RC
vi(t),

which implies

vo(t) = − 1

RC

∫ t

0

vi(τ)dτ + vo(0).

• To ensure that vo(0) = 0, it is always necessary to discharge the
integrators capacitor prior to the application of a signal.
• In practice, the op amp integrator requires a feedback resistor to

reduce dc gain and prevent saturation. Care must be taken that the
op amp operates within the linear range so that it does not saturate.
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6.6.3. A differentiator is an op amp circuit whose output is propor-
tional to the differentiation of the input signal. We obtain a differentiator
by replacing the input resistor in the inverting amplifier by a capacitor.
This gives

+

 – 

v0

+

 – 

iR

a

R

iC

vi

C

+

 – 

vo(t) = −RC d

dt
vi(t).

• Differentiator circuits are electronically unstable because any elec-
trical noise within the circuit is exaggerated by the differentiator.
For this reason, the differentiator circuit above is not as useful and
popular as the integrator. It is seldom used in practice.



CHAPTER 7

Sinusoids and Phasors

Recall that, for capacitors and inductors, the branch variables (current
values and voltage values) are related by differential equations. Normally,
to analyze a circuit containing capacitor and/or inductor, we need to solve
some differential equations. The analysis can be greatly simplifies when
the circuit is driven (or excited) by a source (or sources) that is sinusoidal.
Such assumption will be the main focus of this chapter.

7.1. Prelude to Second-Order Circuits

The next example demonstrates the complication normally involved
when analyzing a circuit containing capacitor and inductor. This example
and the analysis presented is not the main focus of this chapter.

Example 7.1.1. The switch in the figure below has been open for a
long time. It is closed at t = 0.

1 Hi4 Ω 

12 V

t = 0

2 Ω +

 – 

v- F1

2

(a) Find v(0) and dv
dt (0).

(b) Find v(t) for t > 0.
(c) Find v(∞) and dv

dt (∞).

(d) Find v(t) for t > 0 when the source is vs (t) =

{
12, t < 0,
12 cos (t) , t ≥ 0.

91
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From MATLAB,

v = dsolve('D2v + 5*Dv + 6*v = 24','v(0) = 12','Dv(0) = −12')

gives v(t) = 4 + 12e−2t − 4e−3t. Similarly,

v = dsolve('D2v + 5*Dv + 6*v = 2*12*cos(t)','v(0) = 12','Dv(0) = −12','t')

gives v(t) = 72
5 e
−2t − 24

5 e
−3t + 12

5 cos(t) + 12
5 sin(t).
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7.2. Sinusoids

Definition 7.2.1. Some terminology:

(a) A sinusoid is a signal (, e.g. voltage or current) that has the form
of the sine or cosine function.
• Turn out that you can express them all under the same notation

using only cosine (or only sine) function.
– We will use cosine.

(b) A sinusoidal current is referred to as alternating current (AC).
(c) We use the term AC source for any device that supplies a sinu-

soidally varying voltage (potential difference) or current.
(d) Circuits driven by sinusoidal current or voltage sources are called

AC circuits.

7.2.2. Consider the sinusoidal signal (in cosine form)

x(t) = Xm cos(ωt+ φ) = Xm cos(2πft+ φ),

where
Xm: the amplitude of the sinusoid,
ω: the angular frequency in radians/s (or rad/s),
φ: the phase.

• First, we consider the case when φ = 0:

3 

 

t 

• When φ 6= 0, we shift the graph of Xm cos(ωt) to the left “by φ”.

2 

t 
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7.2.3. The period (the time of one complete cycle) of the sinusoid is

T =
2π

ω
.

The unit of the period is in second if the angular frequency unit is in radian
per second.

The frequency f (the number of cycles per second or hertz (Hz)) is
the reciprocal of this quantity, i.e.,

f =
1

T
.

7.2.4. Standard form for sinusoid: In this class, when you are asked
to find the sinusoid representation of a signal, make sure that your answer
is in the form

x(t) = Xm cos(ωt+ φ) = Xm cos(2πft+ φ),

where Xm is nonnegative and φ is between −180◦ and +180◦.

7.2.5. Conversions to standard form

• When the signal is given in the sine form, it can be converted into
its cosine form via the identity

sin(x) = cos(x− 90◦).

1 

t 

In particular,

Xm sin(ωt+ φ) = Xm cos(ωt+ φ− 90◦).

• Xm is always non-negative. We can avoid having the negative sign
by the following conversion:

− cos(x) = cos(x± 180◦).
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In particular,

−A cos(ωt+ φ) = A cos(2πft+ φ± 180◦).

Note that usually you do not have the choice between +180◦ or
−180◦. The one that you need to use is the one that makes φ±180◦

falls somewhere between −180◦ and +180◦.

7.2.6. For any1 linear AC circuit, the “steady-state” voltage and current
are sinusoidal with the same frequency as the driving source(s).

• Although all the voltage and current are sinusoidal, their amplitudes
and phases can be different.

– These can be found by the technique discussed in this chapter.

7.3. Phasors

Sinusoids are easily expressed in terms of phasors, which are more con-
venient to work with than sine and cosine functions. The tradeoff is that
phasors are complex-valued.

7.3.1. The idea of phasor representation is based on Euler’s identity:

ejφ = cosφ+ j sinφ,

From the identity, we may regard cosφ and sinφ as the real and imaginary
parts of ejφ:

cosφ = Re
{
ejφ
}
, sinφ = Im

{
ejφ
}
,

where Re and Im stand for “the real part of” and “the imaginary part of”
ejφ.

Definition 7.3.2. A phasor is a complex number that represents the
amplitude and phase of a sinusoid. Given a sinusoid x(t) = Xm cos(ωt+φ),
then

x(t) = Xm cos(ωt+φ) = Re
{
Xme

j(ωt+φ)
}

= Re
{
Xme

jφ · ejωt
}

= Re
{
Xejωt

}
,

where
X = Xme

jφ = Xm∠φ.

The complex number X is called the phasor representation of the si-
nusoid v(t). Notice that a phasor captures information about amplitude
and phase of the corresponding sinusoid.

1When there are multiple sources, we assume that all sources are at the same frequency.
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7.3.3. Whenever a sinusoid is expressed as a phasor, the term ejωt is
implicit. It is therefore important, when dealing with phasors, to keep in
mind the frequency f (or the angular frequency ω) of the phasor.

7.3.4. Given a phasor X, to obtain the time-domain sinusoid corre-
sponding to a given phasor, there are two important routes.

(a) Simply write down the cosine function with the same magnitude as
the phasor and the argument as ωt plus the phase of the phasor.

(b) Multiply the phasor by the time factor ejωt and take the real part.

7.3.5. Any complex number z (including any phasor) can be equiva-
lently represented in three forms.

(a) Rectangular form: z = x+ jy.
(b) Polar form: z = r∠φ.
(c) Exponential form: z = rejφ

where the relations between them are

r =
√
x2 + y2, φ = tan−1 y

x
± 180◦.

x = r cosφ, y = r sinφ.

Note that for φ, the choice of using +180◦ or −180◦ in the formula is
determined by the actual quadrant in which the complex number lies.

As a complex quantity, a phasor may be expressed in rectangular form,
polar form, or exponential form. In this class, we focus on polar form.

7.3.6. Summary : By suppressing the time factor, we transform the
sinusoid from the time domain to the phasor domain. This transformation
is summarized as follows:

x(t) = Xm cos(ωt+ φ)⇔ X = Xm∠φ.

Time domain representation ⇔ Phasor domain representation
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Definition 7.3.7. Standard form for phasor: In this class, when you
are asked to find the phasor representation of a signal, make sure that your
answer is a complex number in polar form, i.e. r∠φ where r is nonnegative
and φ is between −180◦ and +180◦.

Example 7.3.8. Transform these sinusoids to phasors:

(a) i = 6 cos(50t− 40◦) A

(b) v = −4 sin(30t+ 50◦) V

Example 7.3.9. Find the sinusoids represented by these phasors:

(a) I = −3 + j4 A

(b) V = j8e−j20◦ V

7.3.10. The differences between x(t) and X should be emphasized:

(a) x(t) is the instantaneous or time-domain representation, while X is
the frequency or phasor-domain representation.

(b) x(t) is time dependent, while X is not.
(c) x(t) is always real with no complex term, while X is generally com-

plex.

7.3.11. Adding sinusoids of the same frequency is equivalent to adding
their corresponding phasors. To see this,

A1 cos (ωt+ φ1) + A2 cos (ωt+ φ2) = Re
{
A1e

jωt
}

+ Re
{
A2e

jωt
}

= Re
{

(A1 + A2) e
jωt
}
.

Because A1 + A2 is just another complex number, we can conclude a (sur-
prising) fact: adding two sinusoids of the same frequency gives another
sinusoids.
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Example 7.3.12. x(t) = 4 cos(2t) + 3 sin(2t)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

2

3

4

5

7.3.13. Properties involving differentiation and integration:

(a) Differentiating a sinusoid is equivalent to multiplying its corre-
sponding phasor by jω. In other words,

dx(t)

dt
⇔ jωX.

To see this, suppose x(t) = Xm cos(ωt+ φ). Then,

dx

dt
(t) = −ωXm sin(ωt+ φ) = ωXm cos(ωt+ φ− 90◦ + 180◦)

= Re
{
ωXme

jφej90◦ · ejωt
}

= Re
{
jωXejωt

}
Alternatively, express v(t) as

x(t) = Re
{
Xme

j(ωt+φ)
}
.

Then,
d

dt
x(t) = Re

{
Xmjωe

j(ωt+φ)
}
.

(b) Integrating a sinusoid is equivalent to dividing its corresponding
phasor by jω. In other words,∫

x(t)dt⇔ X

jω
.

Example 7.3.14. Find the voltage v(t) in a circuit described by the
intergrodifferential equation

2
dv

dt
+ 5v + 10

∫
vdt = 50 cos(5t− 30◦)

using the phasor approach.
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7.4. Phasor relationships for circuit elements

7.4.1. Resistor R: If the current through a resistor R is

i(t) = Im cos(ωt+ φ)⇔ I = Im∠φ,

the voltage across it is given by

v(t) = i(t)R = RIm cos(ωt+ φ).

+

 – 

v

+

 – 

VR R

v = iR V = IR

i I

The phasor of the voltage is

V = RIm∠φ.

Hence,
V = IR.

We note that voltage and current are in phase and that the voltage-current
relation for the resistor in the phasor domain continues to be Ohms law,
as in the time domain.

0 Re

I

Im
V

f 
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7.4.2. Capacitor C: If the voltage across a capacitor C is

v(t) = Vm cos(ωt+ φ)⇔ V = Vm∠φ,

the current through it is given by

i(t) = C
dv(t)

dt
⇔ I = jωCV = ωCVm∠(φ+ 90◦).

+

 – 

v

+

 – 

VC C

i = C – I = jwCV

i I

dv

dt

The voltage and current are 90◦ out of phase. Specifically, the current
leads the voltage by 90◦.

0 Re

V

Im

I

f 

w 

• Mnemonic: CIVIL
In a Capacitive (C) circuit, I leads V. In an inductive (L) circuit,

V leads I.
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7.4.3. Inductor L: If the current through an inductor L is

i(t) = Im cos(ωt+ φ)⇔ I = Im∠φ,

the voltage across it is given by

v(t) = L
di(t)

dt
⇔ V = jωLI = ωLIm∠(φ+ 90◦).

+

 – 

v

+

 – 

VL L

v = L – V = jw LI

i I

di

dt

The voltage and current are 90◦ out of phase. Specifically, the current
lags the voltage by 90◦.

0 Re

I

Im

V

f 

w 
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relations for the capacitor; Fig. 9.14 gives the phasor diagram. Table 9.2
summarizes the time-domain and phasor-domain representations of the
circuit elements. v

Re

Im

I
V

0

f

Figure 9.14 Phasor diagram for the capa-
citor; I leads V.

TABLE 9.2 Summary of voltage-current
relationships.

Element Time domain Frequency domain

R v = Ri V = RI

L v = L
di

dt
V = jωLI

C i = C
dv

dt
V = I

jωC

E X A M P L E 9 . 8

The voltage v = 12 cos(60t + 45◦) is applied to a 0.1-H inductor. Find
the steady-state current through the inductor.

Solution:

For the inductor, V = jωLI, where ω = 60 rad/s and V = 12 45◦ V.
Hence

I = V
jωL

= 12 45◦

j60 × 0.1
= 12 45◦

6 90◦
= 2 − 45◦ A

Converting this to the time domain,

i(t) = 2 cos(60t − 45◦) A

P R A C T I C E P R O B L E M 9 . 8

If voltage v = 6 cos(100t−30◦) is applied to a 50µF capacitor, calculate
the current through the capacitor.

Answer: 30 cos(100t + 60◦) mA.

9.5 IMPEDANCE AND ADMITTANCE
In the preceding section, we obtained the voltage-current relations for the
three passive elements as

V = RI, V = jωLI, V = I
jωC

(9.38)

These equations may be written in terms of the ratio of the phasor voltage
to the phasor current as

V
I

= R,
V
I

= jωL,
V
I

= 1

jωC
(9.39)

From these three expressions, we obtain Ohm’s law in phasor form for
any type of element as
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7.5. Impedance and Admittance

In the previous part, we obtained the voltage current relations for the
three passive elements as

V = IR, V = jωLI, I = jωCV.

These equations may be written in terms of the ratio of the phasor voltage
to the phasor of current as

V

I
= R,

V

I
= jωL,

V

I
=

1

jωC
.

From these equations, we obtain Ohm’s law in phasor form for any type of
element as

Z =
V

I
or V = IZ.

Definition 7.5.1. The impedance Z of a circuit is the ratio of the
phasor voltage V to the phasor current I, measured in ohms (Ω).

As a complex quantity, the impedance may be expressed in rectangular
form as

Z = R + jX = |Z|∠θ,
with

|Z| =
√
R2 +X2, θ = tan−1 X

R
, R = |Z| cos θ, X = |Z| sin θ.

R = Re {Z} is called the resistance and X = Im {Z} is called the reac-
tance.

The reactanceX may be positive or negative. We say that the impedance
is inductive when X is positive or capacitive when X is negative.

Definition 7.5.2. The admittance (Y) is the reciprocal of impedance,
measured in Siemens (S). The admittance of an element(or a circuit) is the
ratio of the phasor current through it to phasor voltage across it, or

Y =
1

Z
=

I

V
.
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7.5.3. Kirchhoff’s laws (KCL and KVL) hold in the phasor
form.

To see this, suppose v1, v2, . . . , vn are the voltages around a closed loop,
then

v1 + v2 + · · ·+ vn = 0.

If each voltage vi is a sinusoid, i.e.

vi = Vmi cos(ωt+ φi) = Re
{
Vie

jωt
}

with phasor Vi = Vmi∠φi = Vmie
jφi, then

Re
{

(V1 + V2 + · · ·+ Vn) e
jωt
}

= 0,

which must be true for all time t. To satisfy this, we need

V1 + V2 + · · ·+ Vn = 0.

Hence, KVL holds for phasors.
Similarly, we can show that KCL holds in the frequency domain, i.e.,

if the currents i1, i2, . . . , in are the currents entering or leaving a closed
surface at time t, then

i1 + i2 + · · ·+ in = 0.

If the currents are sinusoids and I1, I2, . . . , In are their phasor forms, then

I1 + I2 + · · ·+ In = 0.

7.5.4. Major Implication: Since Ohm’s Law and Kirchoff’s Laws hold
in phasor domain, all resistance combination formulas, volatge and
current divider formulas, analysis methods (nodal and mesh anal-
ysis) and circuit theorems (linearity, superposition, source transforma-
tion, and Thevenin’s and Norton’s equivalent circuits) that we have previ-
ously studied for dc circuits apply to ac circuits !!!

Just think of impedance as a complex-valued resistance!!

The three-step analysis in the next chapter is based on this insight.

In addition, our ac circuits can now effortlessly include capacitors and
inductors which can be considered as impedances whose values depend on
the frequency ω of the ac sources!!
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7.6. Impedance Combinations

Consider N series-connected impedances as shown below.

Z1

V

I Z2 ZN

+ V1 – + V2 – + VN –
+

 – 

Zeq

The same current I flows through the impedances. Applying KVL
around the loop gives

V = V1 + V2 + · · ·+ VN = I(Z1 + Z2 + · · ·+ ZN)

The equivalent impedance at the input terminals is

Zeq =
V

I
= Z1 + Z2 + · · ·+ ZN .

In particular, if N = 2, the current through the impedance is

Z1

V

I

Z2

+  V1  –
+ 

V2 

–

+

 – 

I =
V

Z1 + Z2
.

Because V1 = Z1I and V2 = Z2I,

V1 =
Z1

Z1 + Z2
V, V2 =

Z2

Z1 + Z2
V

which is the voltage-division relationship.



7.6. IMPEDANCE COMBINATIONS 105

Now, consider N parallel-connected impedances as shown below.

Z1V

I

Z2 ZN

+

 – 

Zeq

I

I1 I2 IN

The voltage across each impedance is the same. Applying KCL at the
top node gives

I = I1 + I2 + · · ·+ IN = V

(
1

Z1
+

1

Z2
+ · · ·+ 1

ZN

)
.

The equivalent impedance Zeq can be found from

1

Zeq
=

I

V
=

1

Z1
+

1

Z2
+ · · ·+ 1

ZN
.

When N = 2,

Zeq =
Z1Z2

Z1 + Z2
.

Because
V = IZeq = I1Z1 = I2Z2,

we have

I1 =
Z2

Z1 + Z2
I, I2 =

Z1

Z1 + Z2
I

which is the current-division principle.

Z1V Z2

+

 – 

I

I1 I2
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Example 7.6.1. Find the input impedance of the circuit below. Assume
that the circuit operates at ω = 50 rad/s.

2 mF

Zin

0.2 H

3 Ω 

10 mF

8 Ω 

Example 7.6.2. Determine vo(t) in the circuit below.

60 Ω 

20 cos(4t – 15°) 5 H

+

 – 
v010 mF



CHAPTER 8

Sinusoidal Steady State Analysis

8.1. General Approach

In the previous chapter, we have learned that the steady-state response
of a circuit to sinusoidal inputs can be obtained by using phasors. In this
chapter, we present many examples in which nodal analysis, mesh analysis,
Thevenin’s theorem, superposition, and source transformations are applied
in analyzing ac circuits.

8.1.1. Steps to analyze ac circuits, using phasor domain:

Step 1. Transform the circuit to the phasor or frequency domain.
• Not necessary if the problem is specified in the frequency do-

main.
Step 2. Solve the problem using circuit techniques (e.g., nodal analysis,

mesh analysis, Thevenin’s theorem, superposition, or source trans-
formations )
• The analysis is performed in the same manner as dc circuit

analysis except that complex numbers are involved.
Step 3. Transform the resulting phasor back to the time domain.

8.1.2. ac circuits are linear (they are just composed of sources and
impedances)

8.1.3. The superposition theorem applies to ac circuits the same
way it applies to dc circuits. This is the case when all the sources in the
circuit operate at the same frequency. If they are operating at different
frequency, see Section 8.2.

107
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8.1.4. Source transformation:

Vs = ZsIs, Is =
Vs

Zs
.

Zs

Vs Is Zs

Is = –
Vs

Zs

a

b
Vs = ZsIs

a

b

8.1.5. Thevenin and Norton Equivalent circuits:

a

Linear

circuit

b

VTh

ZTh
a

b

a

Linear

circuit

b

IN ZN

a

b

VTh = ZNIN, ZTh = ZN
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Example 8.1.6. Compute V1 and V2 in the circuit below using nodal
analysis.

–j3 Ω j6 Ω 

4 Ω 

12 Ω 

10   45° V

2V1 V21

3   0° A

Example 8.1.7. Determine current Io in the circuit below using mesh
analysis.

4 Ω 

I0

I1

I2

I3
5   0° A –j2 Ω 

–j2 Ω 

j10 Ω 

8 Ω 

20   90° V
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Example 8.1.8. Find the Thevenin equivalent at terminals a-b of the
circuit below.

a6 Ω 

10 Ω –j4 Ω 75   20° V

bj2 Ω 

Example 8.1.9. Op Amp AC Circuits: Find the (closed-loop) gain
of the circuit below.

 2 

2. In this experiment, we study the following op amp circuits: 

a) current-to-voltage converter 

b) voltage-to-current converter 

c) integrating amplifier 

 

3. The voltage-to-current and current-to-voltage converters are used in electronic voltmeters 

and ammeters, respectively. 

 

The voltage-to-current converter, as shown in Figure 8-2, produces an output current 

that depends on the input voltage and the resistor R. In particular, the output current  

Iout = Vi/R 

independent of the loading resistance RL. 

 

The current-to-voltage converter, as shown in Figure 8-3, produces an output voltage 

that depends on the input current and the resistor R. In particular, the output voltage  

Vo = -IinR 

independent of the size of the loading resistance RL. 

Figure 8-2: Voltage-to-current converter. Figure 8-3: Current-to-voltage converter. 

 

4. An integrating amplifier is shown in Figure 8-4a.  

 

 

Figure 8-4a: Integrating amplifier 

 

R

+

+ 

vo

-

iC

iin

vi

V+

V-

X

C
+ vC -

R
RL

V+

V-

Vi
Iout

+

+

RL

R

V+

V-

Iin

+

Vo

-
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8.2. Circuit With Multiple Sources Operating At Different
Frequencies

A special care is needed if the circuit has multiple sources operating
at different frequencies. In which case, one must add the responses due
to the individual frequencies in the time domain. In other words, the
superposition still works but

(a) We must have a different frequency-domain circuit for each fre-
quency.

(b) The total response must be obtained by adding the individual re-
sponse in the time domain.

8.2.1. Since the impedance depend on frequency, it is incorrect to try
to add the responses in the phasor or frequency domain. To see this note
that the exponential factor ejωt is implicit in sinusoidal analysis, and that
factor would change for every angular frequency ω. In particular, although∑

i

Vmi cos(ωt+ φi) =
∑
i

Re
{
Vie

jωt
}

= Re

{(∑
i

Vi

)
ejωt

}
,

when we allow ω to be different for each sinusoid, generally∑
i

Vmi cos(ωit+ φi) =
∑
i

Re
{
Vie

jωit
}
6= Re

{(∑
i

Vi

)
ejωit

}
.

Therefore, it does not make sense to add responses at different frequencies
in the phasor domain.

8.2.2. The Thevenin or Norton equivalent circuit (if needed) must be
determined at each frequency and we have one equivalent circuit for each
frequency.
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Example 8.2.3. Find vo in the circuit below using the superposition
theorem.

10 cos 2t V 5 V

+ v0 –

1 Ω 4 Ω 

2 sin 5t A 0.1 F

2 H

+ V3 –

1 Ω 

4 Ω 

I11 Ω 

2   –90° Aj10 Ω –j2 Ω 

(c)

4 Ω 

–j5 Ω 

j4 Ω 

+ V2 –

10   0° V

(b)

1 Ω 4 Ω 

5 V

+ v1 –

(a)
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